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Situational Calculus 



Essentials of Situation Calculus  

 Situation Calculus was introduced by John 

McCarthy in 1969. 

 It describes dynamic domains in FOL using: 

 situations (denote world states; include world history) 

 actions (named, parameterized functions) 

 axioms (to specify actions and domain knowledge) 

 Planning (or: reasoning with actions) in the situation 

calculus is done through theorem proving: 

 Infer a goal situation from the initial situation using 

the given axioms.  



Situation Calculus - Overview 

 Situation Calculus is a specific, enriched FOL language. 

 Actions denote changes of the world and are referred to 
by a name and a parameter-list (like functions). 

 Situations refer to worlds and can be used to represent a 
(possible) world history for a given sequence of actions.   

 The special function Result or do expresses that an action 
is applied in a situation.  

 The effect (changes) and frame (remains) of an action are 
specified through axioms. 

 Planning in situation calculus involves theorem-proving,  
inferring a goal situation from the initial situation.  

 The actions involved in a proof and the bindings of their 
parameters represent the plan. 



Situations 

 A situation corresponds to a world (state). 

 Situations are denoted through FOL terms: e.g. s, s'  

 Actions transform situations, i.e. the application of an 

action in a given situation s yields a situation s'. 

 Situations thus also refer to possible world histories. 

 For example, the expression 

refers to the action sequence:  

yielding a new situation s when applied to S0. 



Situations - Example 

Situation s0 

s0 = {on(A,B),on(B,Fl),clear(A),clear(Fl)}  

on(A,B,s0),on(B,Fl,s0),clear(A,s0), 

clear(Fl,s0)  

Action: move (A, B, Fl) 

Situation s1 

s1 = {on(A,Fl), on(B,Fl), clear(A),clear(B),clear(Fl)} 

on(A,F,s1),on(B,Fl,s1),clear(A,s1),clear(B,s1),clear(Fl,s1) 

A 

B 

A B 



Actions 

Actions are written as functions with their name and a 

parameter list. They can also be referred to by 

variables ( reification). 

Actions transform situations. 

The performance of an action in a situation is denoted 

through the Result or do function. 

The performance (do) of an action a in a situation s 

yields a new situation s'. 



Result- or do-Function 

Result (or: do) is a function from actions and situations 

into situations.  

Example 

s' = do (move (x, y, z), s) 

specifies a new situation s' which is the result of 

performing a move-action in situation s. 

General 

s’ = do (a, s) for action a and situations s, s’ 



do-Function - Example 

situation  s = {on(A,B), on(B,Fl), clear(C)} 

action  a = move (A,B,C) 

apply action a in situation s  

  do (move (A,B,C) , s) = s' 

   s' = {on(A,C), on(B,Fl), clear (B)} 

Instead of specifying the situation s' this way, we 

add situations into the basic formulas (certain basic 

formulas - and terms). 



Fluents 

 Predicates and functions, whose values change due 
to actions, are called fluents. 

 Predicates, whose truth values can change, are 
called relational fluents.  

example:   is_holding(robot, p, s)   or   on(x,y,s) . 

 Functions, whose denotations can vary, are called 
functional fluents.  

example:    loc(robot, s)   or   under(x,s) 

 Actions in a domain are specified by providing action 
precondition axioms, effect axioms and frame 
axioms. 



Situations in Formulas 

Integrating situations into the formulas above yields:  

situation s      on(A,B,s), on(B,Fl,s), clear(C,s) 

action a    move (A,B,C) 

apply action a in situation s   

  do (a, s) 

  do (move (A,B,C), s) = s' 

situation s'      on(A,C,s'), on(B,Fl,s'), clear(B,s') 

Note:   Persistent predicate expressions like Block(A), 

 Block(B), ... remain without s. 



The Calculus of Situation 
Calculus 



Sit Calc Axioms "lite" 



Action Description - Axioms 

Axioms specify what changes and what remains.  

Consider every combination of action and fluent.  

effect-axioms – specify effects, i.e. what changes 

positive effects  a formula becomes true 

negative effects  a formula becomes false 

frame-axioms – specify frame, i.e. what remains 

positive effects  a formula remains true 

negative effects  a formula remains false 

In addition, general axioms specify general laws or 

rules of the domain. 



Effect Axiom - move-example 

action:     move (x, y, z) 

effect-axiom:  

 (on (x, y, s)  clear (z, s)  x  z )   

 on (x, z, do (move (x, y, z), s)) 

Explanation: 

If the left side (condition) of the axiom holds, then the action 

can be performed, and the right side (consequence) 

follows. 

The consequence states what is true in the resulting 

situation, here: on(x,z,s) 



Effect Axioms - move-example 

positive effect  

on (x, y, s)  clear (x, s)  clear (z, s)  y  z   

on (x, z, do (move (x, y, z), s)) 

If x is on y, both x and z are clear, and z is not the block 

onto which x is moved, then a result of the move-action is 

that x is on z. 

negative effect 

on (x, y, s)  clear (x, s)  clear (z, s)  y  z   

on (x, y, do (move (x, y, z), s)) 

If x is on y, both x and z are clear, and z is not the block 

onto which x is moved, then a result of the move-action is 

that x is not anymore on y. 



Frame Axiom - move-example 

action:     move (x, y, z) 

Frame Axiom:  

 on (u, v, s)  x  u    

 on (u, v, do (move (x, y, z), s)) 

Explanation: 

A Frame Axiom states, what remains true or unaffected, 

when an action is performed.  

In the example here: a block u, which is not the one moved, 

remains where it is, i.e. on (u, v) is still valid after the action. 



Frame Axioms - move-example 

 positive frame axiom 

 on (u, v, s)  x  u   

 on (u, v, do (move (x, y, z), s)) 

 If a block u is on another block v, and u is not the block being 

moved, then it stays on v. 

 negative frame axiom 

 on (u, v, s)  (x  u  y  v)   

 on (u, v, do (move (x, y, z), s)) 

  If a block u is not on another block v, and u is not moved, or 

nothing is put on v, then u will still not be on v after the move. 



Sit Calc Axioms in 
GOLOG 



Axioms for Actions 

Actions are specified by providing a certain set of 
domain-dependent axioms.  

These are: 

 action precondition axioms 

 describe under what conditions an action can occur  

 use additional function Poss  

 effect axioms  

 describe what is changed due to an action  

 frame axioms 
 describe what remains unchanged, when an action 

takes place 



If a is possible in s, and there is a robot r, such that a is 

the action that the robot repairs x, then x is not broken 

after the "robot repairs x action" was done in s. 

GOLOG Axioms - Example 



Precondition Axiom - Example 

Action precondition axiom for pickup: 

Poss (pickup (x), s)  x. Holding (x, s)  NextTo (x, s) 

        Heavy (x) 



Effect Axiom - Examples 

Effect axioms for drop, explode, repair: 



Frame Axiom - Example 

Frame axioms for drop: 



The Frame-Problem 

 There can be a large number of frame axioms 
necessary to describe a domain. 

 This complicates the task of axiomatising a domain 
and makes planning or reasoning in situation 
calculus (theorem proving) extremely inefficient. 

 This is the famous Frame Problem. 



Collect all the effect axioms which affect a given 
fluent. Assume that they specify all of the ways that 
the value of the fluent can change. Then apply a 
syntactic transformation to the effect axioms to obtain 
a successor state axiom for the fluent.  

successor-state-axioms:  

combine frame and effect axioms;  

specified for each fluent - action pair 

Successor-State Axioms 



Successor-State Axioms 

general structure 

predicate expression is true in follow state  

the action made it true  

or 

it was true and the action did not make it false. 



How to Derive Successor-State Axioms? 

Effect Axioms Schema: 

a action; s situation; F fluent;  condition for F to become 
true (false) for a in s. 

General Successor State Axiom: 



General and Specific Successor State Axiom 



Situation Calculus Axioms - so far 

Effect axioms describe how an action changes a 

situation, when the action is performed. 

Frame axioms describe, what remains unchanged 

between situations. 

Successor-state axioms combine effect and frame 

axioms. 

Add domain knowledge! 



General Axioms 

General axioms  

Describe formulas, which are true in all situations. 

Example:  

 x, y, s: on (x, y, s)  (y=Table)  clear (y, s) 

For all situations s and all objects x and y: if something is on 

object y in s, and y is not the table, then y is not clear in s. 

 s: clear (Table, s) 

The table (or floor) is always clear. 



Domain Modelling in Sit Calc 

A particular domain of application will be specified by a 
theory in the following form: 



Frame-Problem 

Frame-Problem 

 specify everything which remains stable 

 Leads to too many conditions which would have to 

be explicitly stated for any state transformation. 

Computationally very expensive. 

 Approach: successor-state axioms; STRIPS 



Qualification-Problem 

Qualification-Problem 

 specify everything which is precondition to an action 

 Difficult to include every precondition, which could 

prevent (if not fulfilled) the action to be performed. 

 Approach: non-monotonic reasoning with standard 

preconditions and effects as defaults. 



Ramification-Problem 

Ramification-Problem 

 conflict between change and frame for derived formulas 

 Some axioms state conclusions about fluents indirectly 
affected by actions. This can contradict frame-axioms.  

 Example: An agent grabs an object and holds it. When the 

agent moves, the object moves too (domain model), though this 

is not explicitly stated (not an effect axiom). Normally, objects 

are supposed to stay, where they are (frame-axiom). 

 Frame: every object stays where it is unless it is moved. 

 Domain: if an object is attached to another object and one of 

the objects moves, the other object moves too. 

 Approach: Integrate TMS for derived formulae. 



Planning 



Situation Calculus and Planning 

Planning starts with a specified start situation and the 

specification of a goal situation. 

Planning comprises of finding a proof which infers the 

goal situation from the start situation using successor-

state and other axioms.  

 

A Plan can be read from the proof: it is the sequence of 

actions causing the sequence of transformations of 

situations from the initial situation to the final situation. 

For example, prove S' = at (A, L) from S0 = at (A, S0) 



GOLOG 

Hector J. Levesque, Raymond Reiter, Yves Lesperance, 

Fangzhen Lin and Richard Scherl, Golog: A logic programming 

language for dynamic domains, Journal of Logic Programming, 

31, 59-84, (1997). 

M. Shanmugasundaram, Presentation in 74.757, 2004. 



Golog 

 Golog is a kind of logic programming language for 

reasoning with actions, based on situation calculus. 

 Golog  “alGOL in LOGic”   

 It allows in addition to express and reason with more 

complex action structures, like: 



Golog - Basics 

 Complex action expressions are defined using additional 
extralogical symbols (e.g., while, if, etc.), which act as 
abbreviations for logical expressions in the language of 
the situation calculus. 

 These extralogical expressions are like macros, which 
expand into genuine formulas of the situation calculus. 

 The abbreviation Do(δ, s, s’) is the most basic 
abbreviation used in the Golog language, where δ is a 
complex action expression. 

 Do(δ, s, s’) means that executing δ in situation s has s’ as 
a legal terminating situation.  

 Complex actions may be nondeterministic, i.e. they may 
have several different executions terminating in different 
situations. 



Golog - Definitions 1 

Do is defined inductively for the structure of its first argument: 

1. Primitive actions: 

3. Sequence: 

2. Test actions: 



Golog - Definitions 2 

4. Nondeterministic choice of two actions: 

5. Nondeterministic choice of action arguments: 

6. Nondeterministic iteration:  



Golog - Conditionals 

 Conditionals and while loops are defined in terms of 
the above constructs as follows: 



Golog - Conditionals 

 Procedures are hard to define in situation calculus 
semantics using macro expansion, because there is 
no straightforward way to expand a procedure body, 
when that body includes a recursive call to itself. 

 Use an auxiliary macro definition for any predicate 
symbol P of arity n+2, taking a pair of situation 
arguments:  



Golog - Procedures 

 Semantics of procedures: A Golog program follows 

the block-structured programming style. A program 

of the form 

will then be evaluated as: 



Golog - Blocks World Example 

A blocks world program to make a seven block tower with block A clear in the final situation. 



Programming in / Planning with Golog 

 Golog programs are "executed" using theorem 

proving. 

 Program execution means, given a program δ and 

an initial situation s0, find a terminating situation s for 

δ, if one exists.  

 To do so, we prove the termination of δ as: 

and then extract from the proof a binding for the 

terminating situation. 



Elevator Controller in GOLOG  



GOLOG - Elevator Controller 



GOLOG - Elevator Controller 

The next floor (to be served) is the nearest floor to the 

floor, where the elevators is now, in s. 



GOLOG-Procedures for Elevator  



GOLOG - Running the Elevator  

Intial State  

"Running the Elevator Program"  

Find situation s  

and collect matching action sequence:  



 The initial situation axiom specifies that, initially buttons 

3 and 5 are on, and moreover no other buttons are on. 

Thus, we have complete information initially about which 

call buttons are on. 

Elevator Controller - Initial and Final Situation 

 A successful proof for the elevator program, for 
example, may return the following binding for s: 



Elevator Controller - The Plan 

 This example shows that Golog is a logic programming 

language in the following sense: 

 Its interpreter is a general purpose theorem prover. 

 Like Prolog, Golog programs are executed to obtain 
bindings for the existentially quantified variables of the 
theorem.  

 
 



Golog - Planning as Theorem Proving 

The meaning of this entailment: 

 Do is a macro and not a predicate, and the expression  
stands for a much longer situation calculus sentence. 

 We seek a proof of this macro-expanded sentence from 
axioms, which characterise the fluents and actions of the 
domain.  

 The execution trace represented by this binding is 
passed as solution to the elevator’s execution module, 
which uses it for controlling the elevator in the physical 
world. 

 Running a program is a theorem proving task, which 

establishes the following entailment: 



References 

 Hector J. Levesque, Raymond Reiter, Yves Lesperance, 
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programming language for dynamic domains, Journal of 
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Extensions to Golog 



Golog - Extensions 

 Golog is a sophisticated logic programming language 

for implementing applications in dynamic domains. 

 But Golog lacks or neglects some important features.  

 Sensing and knowledge 

 Exogenous actions 

 Concurrency and reactivity 

 Continuous processes 

 The following slides show some extensions of Golog. 

 



ConGolog 

 ConGolog is a concurrent programming language based 

on the situation calculus 

 The language includes facilities for prioritizing the 

execution of concurrent processes, interrupting the 

execution when certain conditions become true, and 

dealing with exogenous actions. 

 ConGolog differs from other formal models of 

concurrency in at least two ways. First, it allows 

incomplete information about the environment. Second, it 

allows the primitive actions to affect the environment in a 

complex way and such changes to the environment can 

affect the execution of the remainder of the program. 



ConGolog - Semantics 

 By using Do, programs are assigned a semantics in 
terms of a relation, denoted by the formula Do(δ, s, s’), 
which means that a given program δ and a situation s 
returns a situation s’ resulting from executing δ starting 
in the situation s. 

 Semantics of this form are called evaluation semantics, 
since they are based on the complete evaluation of the 
program. 

 To allow concurrency, it is more convenient to adopt a 
different form of semantics, so-called transition 
semantics or computation semantics. 

 Transition semantics are based on defining single steps 
of computation in contrast to directly defining complete 
computations. 



ConGolog (contd…) 

 For this two predicates are defined: Trans(δ, s, δ’, s’) 

and Final(δ, s). 

 Trans(δ, s, δ’, s’) holds, if there is a transition from 

configuration (δ, s) to the configuration (δ’, s’), i.e. if by 

running program δ starting in situation s, one can get to 

situation s’ in one elemantary step with the program δ’ 

remaining to be executed. 

 Every elementary step will either be the execution of an 

atomic action (which changes the situation) or the 

execution of a test (which does not change the situation). 

 Also, if the program is nondeterministic, there are 

several transitions that are possible in a configuration.  



ConGolog (contd…) 

 Final(δ, s) means that the configuration (δ, s) is final; the 
computation is completed, i.e. no part of the program 
remains to be executed. 

 The final situations reached after a finite number of 
transitions from a starting situation coincide with those 
satisfying the Do relation. 

 Complete computations are thus defined by repeatedly 
composing single transitions until a final configuration is 
reached. 

 With Trans and Final, a new definition of Do can be 
given as follows:  



ConGolog (contd…) 

ConGolog is an extended version of Golog that 
incorporates a rich account of concurrency. 

It is rich because it handles: 

 Concurrent processes with possibly different 
priorities 

 High-level interrupts 

 Arbitrary exogenous actions (something happening 
outside of the GOLOG-agent) 

Concurrent processes are modelled as interleavings of 
the primitive actions in the component processes.  

An important concept is that of a process being blocked. 

 

 



ConGolog (contd…) 

 The ConGolog language has the following constructs:  

 Exogenous actions: 



cc-Golog 

 cc-Golog is an action language which incorporates 
continuous change and event-driven behaviour. 

 It is used in high-level robot controllers, which often need 
to specify event-driven behaviour and operate low-level 
processes that change the world in a continuous fashion. 

 Main characteristics of cc-Golog program: 

 Timing of actions is largely event-driven thereby 
providing a reactive behaviour. 

 Actions are executed as soon as possible. 

 Conditions change continuously over time. 

 Good blocking policies. 

 



cc-Golog (contd..) 

 Event-driven behaviour is achieved by including a 

special action waitFor(τ). 

 Continuous change is incorporated through continuous 

fluents, which are functional fluents whose values range 

over functions of time. 

 Blocking policies are specified by means of a special 

instruction withCtrl(φ,σ). 

 Note: cc-Golog only provides deterministic instructions. 



IndiGolog 

 IndiGolog is an action language, which provides 
nondeterminism and integrates sensing actions.  

 While the Golog interpreter works off-line, Indigolog 
programs are executed on-line by means of an 
incremental interpreter. 

 The initial state of the world is incompletely specified 
and the agent or robot must use sensors to determine 
values of certain fluents. 

 Nondeterminism is taken care of by means of an off-
line lookahead search operator Σ.  



Golex 

 The field of autonomous mobile robots lacks methods that 
bridge the gap between high-level symbolic techniques 
and low-level robot control and navigation systems. 

 Golex is an execution and monitoring system with the 
purpose of bridging the gap between Golog and the 
complex, distributed RHINO control software. 

 Golex provides the following features:  

 High level of abstraction 

 Execution monitoring 

 Sensing and Interaction  

 



pGolog 

 Actions of a robot are often best thought of as low level 
processes with uncertain outcomes. 

 A high level robot plan is then a task, that combines the 
low level processes in an appropriate way and may 
involve nondeterminism. 

 The robot needs to turn a given plan into an executable 
program through some form of projection such that it 
satisfies a given goal with a sufficiently high probability. 

 This is achieved through pGolog, a probabilistic variant of 
Golog, whose programs model the low-level processes. 

 High-level plans are ordinary Golog programs, except that 
during projection the names of low-level processes are 
replaced by their pGolog definitions. 


