

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Situational Calculus

Essentials of Situation Calculus

 Situation Calculus was introduced by John

McCarthy in 1969.

 It describes dynamic domains in FOL using:

 situations (denote world states; include world history)

 actions (named, parameterized functions)

 axioms (to specify actions and domain knowledge)

 Planning (or: reasoning with actions) in the situation

calculus is done through theorem proving:

 Infer a goal situation from the initial situation using

the given axioms.

Situation Calculus - Overview

 Situation Calculus is a specific, enriched FOL language.

 Actions denote changes of the world and are referred to
by a name and a parameter-list (like functions).

 Situations refer to worlds and can be used to represent a
(possible) world history for a given sequence of actions.

 The special function Result or do expresses that an action
is applied in a situation.

 The effect (changes) and frame (remains) of an action are
specified through axioms.

 Planning in situation calculus involves theorem-proving,
inferring a goal situation from the initial situation.

 The actions involved in a proof and the bindings of their
parameters represent the plan.

Situations

 A situation corresponds to a world (state).

 Situations are denoted through FOL terms: e.g. s, s'

 Actions transform situations, i.e. the application of an

action in a given situation s yields a situation s'.

 Situations thus also refer to possible world histories.

 For example, the expression

refers to the action sequence:

yielding a new situation s when applied to S0.

Situations - Example

Situation s0

s0 = {on(A,B),on(B,Fl),clear(A),clear(Fl)}

on(A,B,s0),on(B,Fl,s0),clear(A,s0),

clear(Fl,s0)

Action: move (A, B, Fl)

Situation s1

s1 = {on(A,Fl), on(B,Fl), clear(A),clear(B),clear(Fl)}

on(A,F,s1),on(B,Fl,s1),clear(A,s1),clear(B,s1),clear(Fl,s1)

A

B

A B

Actions

Actions are written as functions with their name and a

parameter list. They can also be referred to by

variables (reification).

Actions transform situations.

The performance of an action in a situation is denoted

through the Result or do function.

The performance (do) of an action a in a situation s

yields a new situation s'.

Result- or do-Function

Result (or: do) is a function from actions and situations

into situations.

Example

s' = do (move (x, y, z), s)

specifies a new situation s' which is the result of

performing a move-action in situation s.

General

s’ = do (a, s) for action a and situations s, s’

do-Function - Example

situation s = {on(A,B), on(B,Fl), clear(C)}

action a = move (A,B,C)

apply action a in situation s

 do (move (A,B,C) , s) = s'

 s' = {on(A,C), on(B,Fl), clear (B)}

Instead of specifying the situation s' this way, we

add situations into the basic formulas (certain basic

formulas - and terms).

Fluents

 Predicates and functions, whose values change due
to actions, are called fluents.

 Predicates, whose truth values can change, are
called relational fluents.

example: is_holding(robot, p, s) or on(x,y,s) .

 Functions, whose denotations can vary, are called
functional fluents.

example: loc(robot, s) or under(x,s)

 Actions in a domain are specified by providing action
precondition axioms, effect axioms and frame
axioms.

Situations in Formulas

Integrating situations into the formulas above yields:

situation s on(A,B,s), on(B,Fl,s), clear(C,s)

action a move (A,B,C)

apply action a in situation s

 do (a, s)

 do (move (A,B,C), s) = s'

situation s' on(A,C,s'), on(B,Fl,s'), clear(B,s')

Note: Persistent predicate expressions like Block(A),

 Block(B), ... remain without s.

The Calculus of Situation
Calculus

Sit Calc Axioms "lite"

Action Description - Axioms

Axioms specify what changes and what remains.

Consider every combination of action and fluent.

effect-axioms – specify effects, i.e. what changes

positive effects a formula becomes true

negative effects a formula becomes false

frame-axioms – specify frame, i.e. what remains

positive effects a formula remains true

negative effects a formula remains false

In addition, general axioms specify general laws or

rules of the domain.

Effect Axiom - move-example

action: move (x, y, z)

effect-axiom:

 (on (x, y, s) clear (z, s) x z)

 on (x, z, do (move (x, y, z), s))

Explanation:

If the left side (condition) of the axiom holds, then the action

can be performed, and the right side (consequence)

follows.

The consequence states what is true in the resulting

situation, here: on(x,z,s)

Effect Axioms - move-example

positive effect

on (x, y, s) clear (x, s) clear (z, s) y z

on (x, z, do (move (x, y, z), s))

If x is on y, both x and z are clear, and z is not the block

onto which x is moved, then a result of the move-action is

that x is on z.

negative effect

on (x, y, s) clear (x, s) clear (z, s) y z

on (x, y, do (move (x, y, z), s))

If x is on y, both x and z are clear, and z is not the block

onto which x is moved, then a result of the move-action is

that x is not anymore on y.

Frame Axiom - move-example

action: move (x, y, z)

Frame Axiom:

 on (u, v, s) x u

 on (u, v, do (move (x, y, z), s))

Explanation:

A Frame Axiom states, what remains true or unaffected,

when an action is performed.

In the example here: a block u, which is not the one moved,

remains where it is, i.e. on (u, v) is still valid after the action.

Frame Axioms - move-example

 positive frame axiom

 on (u, v, s) x u

 on (u, v, do (move (x, y, z), s))

 If a block u is on another block v, and u is not the block being

moved, then it stays on v.

 negative frame axiom

 on (u, v, s) (x u y v)

 on (u, v, do (move (x, y, z), s))

 If a block u is not on another block v, and u is not moved, or

nothing is put on v, then u will still not be on v after the move.

Sit Calc Axioms in
GOLOG

Axioms for Actions

Actions are specified by providing a certain set of
domain-dependent axioms.

These are:

 action precondition axioms

 describe under what conditions an action can occur

 use additional function Poss

 effect axioms

 describe what is changed due to an action

 frame axioms
 describe what remains unchanged, when an action

takes place

If a is possible in s, and there is a robot r, such that a is

the action that the robot repairs x, then x is not broken

after the "robot repairs x action" was done in s.

GOLOG Axioms - Example

Precondition Axiom - Example

Action precondition axiom for pickup:

Poss (pickup (x), s) x. Holding (x, s) NextTo (x, s)

 Heavy (x)

Effect Axiom - Examples

Effect axioms for drop, explode, repair:

Frame Axiom - Example

Frame axioms for drop:

The Frame-Problem

 There can be a large number of frame axioms
necessary to describe a domain.

 This complicates the task of axiomatising a domain
and makes planning or reasoning in situation
calculus (theorem proving) extremely inefficient.

 This is the famous Frame Problem.

Collect all the effect axioms which affect a given
fluent. Assume that they specify all of the ways that
the value of the fluent can change. Then apply a
syntactic transformation to the effect axioms to obtain
a successor state axiom for the fluent.

successor-state-axioms:

combine frame and effect axioms;

specified for each fluent - action pair

Successor-State Axioms

Successor-State Axioms

general structure

predicate expression is true in follow state

the action made it true

or

it was true and the action did not make it false.

How to Derive Successor-State Axioms?

Effect Axioms Schema:

a action; s situation; F fluent; condition for F to become
true (false) for a in s.

General Successor State Axiom:

General and Specific Successor State Axiom

Situation Calculus Axioms - so far

Effect axioms describe how an action changes a

situation, when the action is performed.

Frame axioms describe, what remains unchanged

between situations.

Successor-state axioms combine effect and frame

axioms.

Add domain knowledge!

General Axioms

General axioms

Describe formulas, which are true in all situations.

Example:

 x, y, s: on (x, y, s) (y=Table) clear (y, s)

For all situations s and all objects x and y: if something is on

object y in s, and y is not the table, then y is not clear in s.

 s: clear (Table, s)

The table (or floor) is always clear.

Domain Modelling in Sit Calc

A particular domain of application will be specified by a
theory in the following form:

Frame-Problem

Frame-Problem

 specify everything which remains stable

 Leads to too many conditions which would have to

be explicitly stated for any state transformation.

Computationally very expensive.

 Approach: successor-state axioms; STRIPS

Qualification-Problem

Qualification-Problem

 specify everything which is precondition to an action

 Difficult to include every precondition, which could

prevent (if not fulfilled) the action to be performed.

 Approach: non-monotonic reasoning with standard

preconditions and effects as defaults.

Ramification-Problem

Ramification-Problem

 conflict between change and frame for derived formulas

 Some axioms state conclusions about fluents indirectly
affected by actions. This can contradict frame-axioms.

 Example: An agent grabs an object and holds it. When the

agent moves, the object moves too (domain model), though this

is not explicitly stated (not an effect axiom). Normally, objects

are supposed to stay, where they are (frame-axiom).

 Frame: every object stays where it is unless it is moved.

 Domain: if an object is attached to another object and one of

the objects moves, the other object moves too.

 Approach: Integrate TMS for derived formulae.

Planning

Situation Calculus and Planning

Planning starts with a specified start situation and the

specification of a goal situation.

Planning comprises of finding a proof which infers the

goal situation from the start situation using successor-

state and other axioms.

A Plan can be read from the proof: it is the sequence of

actions causing the sequence of transformations of

situations from the initial situation to the final situation.

For example, prove S' = at (A, L) from S0 = at (A, S0)

GOLOG

Hector J. Levesque, Raymond Reiter, Yves Lesperance,

Fangzhen Lin and Richard Scherl, Golog: A logic programming

language for dynamic domains, Journal of Logic Programming,

31, 59-84, (1997).

M. Shanmugasundaram, Presentation in 74.757, 2004.

Golog

 Golog is a kind of logic programming language for

reasoning with actions, based on situation calculus.

 Golog “alGOL in LOGic”

 It allows in addition to express and reason with more

complex action structures, like:

Golog - Basics

 Complex action expressions are defined using additional
extralogical symbols (e.g., while, if, etc.), which act as
abbreviations for logical expressions in the language of
the situation calculus.

 These extralogical expressions are like macros, which
expand into genuine formulas of the situation calculus.

 The abbreviation Do(δ, s, s’) is the most basic
abbreviation used in the Golog language, where δ is a
complex action expression.

 Do(δ, s, s’) means that executing δ in situation s has s’ as
a legal terminating situation.

 Complex actions may be nondeterministic, i.e. they may
have several different executions terminating in different
situations.

Golog - Definitions 1

Do is defined inductively for the structure of its first argument:

1. Primitive actions:

3. Sequence:

2. Test actions:

Golog - Definitions 2

4. Nondeterministic choice of two actions:

5. Nondeterministic choice of action arguments:

6. Nondeterministic iteration:

Golog - Conditionals

 Conditionals and while loops are defined in terms of
the above constructs as follows:

Golog - Conditionals

 Procedures are hard to define in situation calculus
semantics using macro expansion, because there is
no straightforward way to expand a procedure body,
when that body includes a recursive call to itself.

 Use an auxiliary macro definition for any predicate
symbol P of arity n+2, taking a pair of situation
arguments:

Golog - Procedures

 Semantics of procedures: A Golog program follows

the block-structured programming style. A program

of the form

will then be evaluated as:

Golog - Blocks World Example

A blocks world program to make a seven block tower with block A clear in the final situation.

Programming in / Planning with Golog

 Golog programs are "executed" using theorem

proving.

 Program execution means, given a program δ and

an initial situation s0, find a terminating situation s for

δ, if one exists.

 To do so, we prove the termination of δ as:

and then extract from the proof a binding for the

terminating situation.

Elevator Controller in GOLOG

GOLOG - Elevator Controller

GOLOG - Elevator Controller

The next floor (to be served) is the nearest floor to the

floor, where the elevators is now, in s.

GOLOG-Procedures for Elevator

GOLOG - Running the Elevator

Intial State

"Running the Elevator Program"

Find situation s

and collect matching action sequence:

 The initial situation axiom specifies that, initially buttons

3 and 5 are on, and moreover no other buttons are on.

Thus, we have complete information initially about which

call buttons are on.

Elevator Controller - Initial and Final Situation

 A successful proof for the elevator program, for
example, may return the following binding for s:

Elevator Controller - The Plan

 This example shows that Golog is a logic programming

language in the following sense:

 Its interpreter is a general purpose theorem prover.

 Like Prolog, Golog programs are executed to obtain
bindings for the existentially quantified variables of the
theorem.

Golog - Planning as Theorem Proving

The meaning of this entailment:

 Do is a macro and not a predicate, and the expression
stands for a much longer situation calculus sentence.

 We seek a proof of this macro-expanded sentence from
axioms, which characterise the fluents and actions of the
domain.

 The execution trace represented by this binding is
passed as solution to the elevator’s execution module,
which uses it for controlling the elevator in the physical
world.

 Running a program is a theorem proving task, which

establishes the following entailment:

References

 Hector J. Levesque, Raymond Reiter, Yves Lesperance,

Fangzhen Lin and Richard Scherl, Golog: A logic

programming language for dynamic domains, Journal of

Logic Programming, 31, 59-84, (1997).

Extensions to Golog

Golog - Extensions

 Golog is a sophisticated logic programming language

for implementing applications in dynamic domains.

 But Golog lacks or neglects some important features.

 Sensing and knowledge

 Exogenous actions

 Concurrency and reactivity

 Continuous processes

 The following slides show some extensions of Golog.

ConGolog

 ConGolog is a concurrent programming language based

on the situation calculus

 The language includes facilities for prioritizing the

execution of concurrent processes, interrupting the

execution when certain conditions become true, and

dealing with exogenous actions.

 ConGolog differs from other formal models of

concurrency in at least two ways. First, it allows

incomplete information about the environment. Second, it

allows the primitive actions to affect the environment in a

complex way and such changes to the environment can

affect the execution of the remainder of the program.

ConGolog - Semantics

 By using Do, programs are assigned a semantics in
terms of a relation, denoted by the formula Do(δ, s, s’),
which means that a given program δ and a situation s
returns a situation s’ resulting from executing δ starting
in the situation s.

 Semantics of this form are called evaluation semantics,
since they are based on the complete evaluation of the
program.

 To allow concurrency, it is more convenient to adopt a
different form of semantics, so-called transition
semantics or computation semantics.

 Transition semantics are based on defining single steps
of computation in contrast to directly defining complete
computations.

ConGolog (contd…)

 For this two predicates are defined: Trans(δ, s, δ’, s’)

and Final(δ, s).

 Trans(δ, s, δ’, s’) holds, if there is a transition from

configuration (δ, s) to the configuration (δ’, s’), i.e. if by

running program δ starting in situation s, one can get to

situation s’ in one elemantary step with the program δ’

remaining to be executed.

 Every elementary step will either be the execution of an

atomic action (which changes the situation) or the

execution of a test (which does not change the situation).

 Also, if the program is nondeterministic, there are

several transitions that are possible in a configuration.

ConGolog (contd…)

 Final(δ, s) means that the configuration (δ, s) is final; the
computation is completed, i.e. no part of the program
remains to be executed.

 The final situations reached after a finite number of
transitions from a starting situation coincide with those
satisfying the Do relation.

 Complete computations are thus defined by repeatedly
composing single transitions until a final configuration is
reached.

 With Trans and Final, a new definition of Do can be
given as follows:

ConGolog (contd…)

ConGolog is an extended version of Golog that
incorporates a rich account of concurrency.

It is rich because it handles:

 Concurrent processes with possibly different
priorities

 High-level interrupts

 Arbitrary exogenous actions (something happening
outside of the GOLOG-agent)

Concurrent processes are modelled as interleavings of
the primitive actions in the component processes.

An important concept is that of a process being blocked.

ConGolog (contd…)

 The ConGolog language has the following constructs:

 Exogenous actions:

cc-Golog

 cc-Golog is an action language which incorporates
continuous change and event-driven behaviour.

 It is used in high-level robot controllers, which often need
to specify event-driven behaviour and operate low-level
processes that change the world in a continuous fashion.

 Main characteristics of cc-Golog program:

 Timing of actions is largely event-driven thereby
providing a reactive behaviour.

 Actions are executed as soon as possible.

 Conditions change continuously over time.

 Good blocking policies.

cc-Golog (contd..)

 Event-driven behaviour is achieved by including a

special action waitFor(τ).

 Continuous change is incorporated through continuous

fluents, which are functional fluents whose values range

over functions of time.

 Blocking policies are specified by means of a special

instruction withCtrl(φ,σ).

 Note: cc-Golog only provides deterministic instructions.

IndiGolog

 IndiGolog is an action language, which provides
nondeterminism and integrates sensing actions.

 While the Golog interpreter works off-line, Indigolog
programs are executed on-line by means of an
incremental interpreter.

 The initial state of the world is incompletely specified
and the agent or robot must use sensors to determine
values of certain fluents.

 Nondeterminism is taken care of by means of an off-
line lookahead search operator Σ.

Golex

 The field of autonomous mobile robots lacks methods that
bridge the gap between high-level symbolic techniques
and low-level robot control and navigation systems.

 Golex is an execution and monitoring system with the
purpose of bridging the gap between Golog and the
complex, distributed RHINO control software.

 Golex provides the following features:

 High level of abstraction

 Execution monitoring

 Sensing and Interaction

pGolog

 Actions of a robot are often best thought of as low level
processes with uncertain outcomes.

 A high level robot plan is then a task, that combines the
low level processes in an appropriate way and may
involve nondeterminism.

 The robot needs to turn a given plan into an executable
program through some form of projection such that it
satisfies a given goal with a sufficiently high probability.

 This is achieved through pGolog, a probabilistic variant of
Golog, whose programs model the low-level processes.

 High-level plans are ordinary Golog programs, except that
during projection the names of low-level processes are
replaced by their pGolog definitions.

